

Airborne Flux Observations Constrain Sources and Sinks of Reactive Gases

Acknowledgments
NASA ROSES SEAC4RS
NASA ROSES ACCDAM
DC-8 pilots and crew
SEAC4RS science team

<u>G. M. Wolfe</u>^{1,2}, T. F. Hanisco¹, H. L. Arkinson³, T. P. Bui⁴, J. D. Crounse⁵, J. Dean-Day^{4,6}, A. Goldstein⁷, A. Guenther⁸, S. R. Hall⁹, G. Huey¹⁰, D. J. Jacob¹¹, T. Karl¹², P. S. Kim¹¹, X. Liu¹⁰, M. R. Marvin³, T. Mikoviny¹³, P. K. Misztal⁷, T. B. Nguyen⁵, J. Peischl^{14,15}, I. Pollack^{14,15}, T. Ryerson¹⁴, J. M. St. Clair⁵, A. Teng⁵, K. R. Travis¹¹, K. Ullmann⁹, P. O. Wennberg⁵, and A. Wisthaler¹³

¹NASA GSFC, ²JCET/UMBC, ³U. MD, ⁴NASA ARC, ⁵Caltech, ⁶BAERI, ⁷UC Berkeley, ⁸PNNL, ⁹NCAR, ¹⁰GA Tech, ¹¹Harvard, ¹²U. Innsbruck, ¹³U. Oslo, ¹⁴NOAA, ¹⁵CIRES/CU Boulder

MOTIVATION

- Forests are both a source and sink of reactive gases
- Gaps in our understanding of emissions, deposition and chemistry collectively limit confidence in model predictions
- Disentangling processes with observations of chemical concentrations alone is challenging

E 0.8

₩ 0.4

Flux (pptv m/s)

MISSION

SEAC⁴RS: Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys

 HO_2

METHODS

Eddy Covariance Mass Balance

Concentrations vary in ac ac ar

Fluxes provide direct constraints on the <u>rates</u> of physical and chemical processes.

RADICAL CYCLING

- Concentrations of OH and HO₂ derived from slope of isoprene and H₂O₂ flux vertical profiles
- Comparison with GEOS-Chem and UWCM shows good agreement for HO₂ but not OH

Fluxes provide an additional check on radical concentrations in efforts to improve model mechanisms and investigate measurement artifacts.

Source	[OH] 10 ⁶ cm ⁻³	[HO ₂] 10 ⁸ cm ⁻³
Flux	1.3 ± 0.3	5.8 ± 1.0
GEOS-Chem	0.5 ± 0.1	5.8 ± 0.4
UWCM (0-D)	1.0 ± 0.4	6.6 ± 0.6

ISOMERIZATION

- Curvature reflects temperature dependence of isomerization
- Calculated flux profile using lab-derived HPALD production rate agrees with observed slope

Isomerization may be a less important radical source in low NO_x regimes than initially proposed.

E-to-W Distance (km)

AEROSOL UPTAKE

- Difference in calculated vs observed slopes imply unknown sources/sinks
- ISOPOOH+IEPOX budget closed with minimal aerosol uptake
- 70% of ISOPN sink may be due to aerosol losses

Isoprene nitrates may be a source of particle mass, while IEPOX uptake may be inhibited (in this environment).

- Observed isoprene emissions are 40% lower than model
- Observed soil NO_x emissions are 50% higher than model
- Wavelet transforms illustrate how surface fluxes vary across the transect

Direct measurements of surface fluxes at an ecosystem scale are ideal for targeted refinement of emission inventories.

·ISOPO₂

LIFETIME OF NOX

- Lifetime derived from flux slope (2.0 h) longer than that from known sinks (1.4 h)
- NO_x recycling from AN of 29% can reconcile this difference

Temporary reservoir species extend the spatial impact of NO_x emissions on pollutant formation and N deposition.

DEPOSITION

- Model accurately predicts O₃
 deposition (for this case)
- H₂O₂ deposition consistent with transport-limited uptake
- Variability along transect may reflect both surface characteristics and chemistry

Parameterizations must be retooled to robustly reflect physical and chemical mechanisms driving deposition.